Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The ocean microbe‐metabolite network involves thousands of individual metabolites that encompass a breadth of chemical diversity and biological functions. These microbial metabolites mediate biogeochemical cycles, facilitate ecological relationships, and impact ecosystem health. While analytical advancements have begun to illuminate such roles, a challenge in navigating the deluge of marine metabolomics information is to identify a subset of metabolites that have the greatest ecosystem impact. Here, we present an ecological framework to distill knowledge of fundamental metabolites that underpin marine ecosystems. We borrow terms from macroecology that describe important species, namely “dominant,” “keystone,” and “indicator” species, and apply these designations to metabolites within the ocean microbial metabolome. These selected metabolites may shape marine community structure, function, and health and provide focal points for enhanced study of microbe‐metabolite networks. Applying ecological concepts to marine metabolites provides a path to leverage metabolomics data to better describe and predict marine microbial ecosystems.more » « lessFree, publicly-accessible full text available July 19, 2026
-
Abstract Dissolved primary production released into seawater by marine phytoplankton is a major source of carbon fueling heterotrophic bacterial production in the ocean. The composition of the organic compounds released by healthy phytoplankton is poorly known and difficult to assess with existing chemical methods. Here, expression of transporter and catabolic genes by three model marine bacteria ( Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14, and Polaribacter dokdonensis MED152) was used as a biological sensor of metabolites released from the picoeukaryote Micromonas commoda RCC299. Bacterial expression responses indicated that the three species together recognized 38 picoeukaryote metabolites. This was consistent with the Micromonas expression of genes for starch metabolism and synthesis of peptidoglycan-like intermediates. A comparison of the hypothesized Micromonas exometabolite pool with that of the diatom Thalassiosira pseudonana CCMP1335, analyzed previously with the same biological sensor method, indicated that both phytoplankton released organic acids, nucleosides, and amino acids, but differed in polysaccharide and organic nitrogen release. Future ocean conditions are expected to favor picoeukaryotic phytoplankton over larger-celled microphytoplankton. Results from this study suggest that such a shift could alter the substrate pool available to heterotrophic bacterioplankton.more » « less
-
Bacteria that assemble in phycospheres surrounding living phytoplankton cells metabolize a substantial proportion of ocean primary productivity. Yet the type and extent of interactions occurring among species that colonize these micron-scale “hot spot” environments are challenging to study. We identified genes that mediate bacterial interactions in phycosphere communities by culturing a transposon mutant library of copiotrophic bacterium Ruegeria pomeroyi DSS-3 with the diatom Thalassiosira pseudonana CCMP1335 as the sole source of organic matter in the presence or absence of other heterotrophic bacterial species. The function of genes having significant effects on R. pomeroyi fitness indicated explicit cell–cell interactions initiated in the multibacterial phycospheres. We found that R. pomeroyi simultaneously competed for shared substrates while increasing reliance on substrates that did not support the other species’ growth. Fitness outcomes also indicated that the bacterium competed for nitrogen in the forms of ammonium and amino acids; obtained purines, pyrimidines, and cofactors via crossfeeding; both initiated and defended antagonistic interactions; and sensed an environment with altered oxygen and superoxide levels. The large genomes characteristic of copiotrophic marine bacteria are hypothesized to enable responses to dynamic ecological challenges occurring at the scale of microns. Here, we discover >200 nonessential genes implicated in the management of fitness costs and benefits of membership in a globally significant bacterial community.more » « less
-
Abstract Phytoplankton-derived metabolites fuel a large fraction of heterotrophic bacterial production in the global ocean, yet methodological challenges have limited our understanding of the organic molecules transferred between these microbial groups. In an experimental bloom study consisting of three heterotrophic marine bacteria growing together with the diatom Thalassiosira pseudonana, we concurrently measured diatom endometabolites (i.e., potential exometabolite supply) by nuclear magnetic resonance (NMR) spectroscopy and bacterial gene expression (i.e., potential exometabolite uptake) by metatranscriptomic sequencing. Twenty-two diatom endometabolites were annotated, with nine increasing in internal concentration in the late stage of the bloom, eight decreasing, and five showing no variation through the bloom progression. Some metabolite changes could be linked to shifts in diatom gene expression, as well as to shifts in bacterial community composition and their expression of substrate uptake and catabolism genes. Yet an overall low match indicated that endometabolome concentration was not a good predictor of exometabolite availability, and that complex physiological and ecological interactions underlie metabolite exchange. Six diatom endometabolites accumulated to higher concentrations in the bacterial co-cultures compared to axenic cultures, suggesting a bacterial influence on rates of synthesis or release of glutamate, arginine, leucine, 2,3-dihydroxypropane-1-sulfonate, glucose, and glycerol-3-phosphate. Better understanding of phytoplankton metabolite production, release, and transfer to assembled bacterial communities is key to untangling this nearly invisible yet pivotal step in ocean carbon cycling.more » « less
An official website of the United States government
